1,488 research outputs found

    Fast electrochemical doping due to front instability in organic semiconductors

    Full text link
    The electrochemical doping transformation in organic semiconductor devices is studied in application to light-emitting cells. It is shown that the device performance can be significantly improved by utilizing new fundamental properties of the doping process. We obtain an instability, which distorts the doping fronts and increases the doping rate considerably. We explain the physical mechanism of the instability, develop theory, provide experimental evidence, and perform numerical simulations. We further show how improved device design can amplify the instability thus leading to a much faster doping process and device kinetics.Comment: 4 pages, 4 figure

    Inter-Intra Molecular Dynamics as an Iterated Function System

    Full text link
    The dynamics of units (molecules) with slowly relaxing internal states is studied as an iterated function system (IFS) for the situation common in e.g. biological systems where these units are subjected to frequent collisional interactions. It is found that an increase in the collision frequency leads to successive discrete states that can be analyzed as partial steps to form a Cantor set. By considering the interactions among the units, a self-consistent IFS is derived, which leads to the formation and stabilization of multiple such discrete states. The relevance of the results to dynamical multiple states in biomolecules in crowded conditions is discussed.Comment: 7 pages, 7 figures. submitted to Europhysics Letter

    Synchronization of active mechanical oscillators by an inertial load

    Get PDF
    Motivated by the operation of myogenic (self-oscillatory) insect flight muscle, we study a model consisting of a large number of identical oscillatory contractile elements joined in a chain, whose end is attached to a damped mass-spring oscillator. When the inertial load is small, the serial coupling favors an antisynchronous state in which the extension of one oscillator is compensated by the contraction of another, in order to preserve the total length. However, a sufficiently massive load can sychronize the oscillators and can even induce oscillation in situations where isolated elements would be stable. The system has a complex phase diagram displaying quiescent, synchronous and antisynchrononous phases, as well as an unsual asynchronous phase in which the total length of the chain oscillates at a different frequency from the individual active elements.Comment: 5 pages, 4 figures, To appear in Phys. Rev. Let

    Survival and residence times in disordered chains with bias

    Full text link
    We present a unified framework for first-passage time and residence time of random walks in finite one-dimensional disordered biased systems. The derivation is based on exact expansion of the backward master equation in cumulants. The dependence on initial condition, system size, and bias strength is explicitly studied for models with weak and strong disorder. Application to thermally activated processes is also developed.Comment: 13 pages with 2 figures, RevTeX4; v2:minor grammatical changes, typos correcte

    Force and Motion Generation of Molecular Motors: A Generic Description

    Get PDF
    We review the properties of biological motor proteins which move along linear filaments that are polar and periodic. The physics of the operation of such motors can be described by simple stochastic models which are coupled to a chemical reaction. We analyze the essential features of force and motion generation and discuss the general properties of single motors in the framework of two-state models. Systems which contain large numbers of motors such as muscles and flagella motivate the study of many interacting motors within the framework of simple models. In this case, collective effects can lead to new types of behaviors such as dynamic instabilities of the steady states and oscillatory motion.Comment: 29 pages, 9 figure

    Assessment of the dining environment on and near the campuses of fifteen post-secondary institutions

    Get PDF
    Objective: The present study evaluated the restaurant and dining venues on and near post-secondary campuses varying in institution size. Design: The Nutrition Environment Measures Survey for Restaurants (NEMS-R) was modified to evaluate restaurants as fast food, sit down and fast casual; and campus dining venues as dining halls, student unions and snack bar/cafe ́s. ANOVA with post hoc Tukey’s B and T tests were used to distinguish differences between dining venues and associated institutions by size. Setting: The study was conducted at fifteen US post-secondary institutions, 2009–2011. Subjects: Data presented are from a sample of 175 restaurants and sixty-eight on-campus dining venues. Results: There were minimal differences in dining halls by institution size, although medium-sized institutions as compared with small-sized institutions offered significantly more healthful side dish/salad bar items. Dining halls scored significantly higher than student unions or snack bar/cafe ́s on healthful entre ́es, side dish/salad bar and beverages offerings, but they also had the most barriers to healthful dietary habits (i.e. all-you-can-eat). No differences were found by restaurant type for NEMS-R scores for total restaurant dining environment or healthful entre ́es and barriers. Snack bars had more healthful side dishes (P 5 0?002) and fast-food restaurants had the highest level of facilitators (i.e. nutrition information; P 5 0?002). Conclusions: Based on this evaluation in fifteen institutions, the full campus dining environment provides limited support for healthy eating and obesity prevention. The quality of campus dining environments can be improved via healthful offerings, providing nutrition information and other supports to facilitate healthy eating and prevent unwanted weight gain

    Interactions between Connected Half-Sarcomeres Produce Emergent Mechanical Behavior in a Mathematical Model of Muscle

    Get PDF
    Most reductionist theories of muscle attribute a fiber's mechanical properties to the scaled behavior of a single half-sarcomere. Mathematical models of this type can explain many of the known mechanical properties of muscle but have to incorporate a passive mechanical component that becomes ∼300% stiffer in activating conditions to reproduce the force response elicited by stretching a fast mammalian muscle fiber. The available experimental data suggests that titin filaments, which are the mostly likely source of the passive component, become at most ∼30% stiffer in saturating Ca2+ solutions. The work described in this manuscript used computer modeling to test an alternative systems theory that attributes the stretch response of a mammalian fiber to the composite behavior of a collection of half-sarcomeres. The principal finding was that the stretch response of a chemically permeabilized rabbit psoas fiber could be reproduced with a framework consisting of 300 half-sarcomeres arranged in 6 parallel myofibrils without requiring titin filaments to stiffen in activating solutions. Ablation of inter-myofibrillar links in the computer simulations lowered isometric force values and lowered energy absorption during a stretch. This computed behavior mimics effects previously observed in experiments using muscles from desmin-deficient mice in which the connections between Z-disks in adjacent myofibrils are presumably compromised. The current simulations suggest that muscle fibers exhibit emergent properties that reflect interactions between half-sarcomeres and are not properties of a single half-sarcomere in isolation. It is therefore likely that full quantitative understanding of a fiber's mechanical properties requires detailed analysis of a complete fiber system and cannot be achieved by focusing solely on the properties of a single half-sarcomere

    Effects of Post-Translational Modifications of Fibrinogen on Clot Formation, Clot Structure, and Fibrinolysis: A Systematic Review

    Get PDF
    OBJECTIVE: Post-translational modifications of fibrinogen influence the occurrence and progression of thrombotic diseases. In this systematic review, we assessed the current literature on post-translational modifications of fibrinogen and their effects on fibrin formation and clot characteristics. Approach and Results: A systematic search of Medline, Embase, Cochrane Library, and Web of Science was performed to find studies reporting post-translational modifications of fibrinogen and the effects on clot formation and structure. Both in vitro studies and ex vivo studies using patient material were included. One hundred five articles were included, describing 11 different modifications of fibrinogen. For the best known and studied modifications, conclusions could be drawn about their effect on clot formation and structure. Oxidation, high levels of nitration, and glycosylation inhibit the rate of polymerization, resulting in dense clots with thinner fibers, while low levels of nitration increase the rate of polymerization. Glycation showed different results for polymerization, but f
    corecore